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In a recent paper, Mathiazhagan and Johri reduced the field equations for an 
isotropic, homogeneous, and almost fiat universe with a constant vacuum-energy 
density by Brans-Dicke theory to a pair of coupled differential equations. They 
also obtained a particular solution of these equations. Further, they used this 
particular solution of the equations to estimate the value of the gravitational 
constant. Here we obtain the complete set of solutions of the above-mentioned 
coupled differential equations and improved the estimate of Mathiazhagan and 
Johri of the gravitational constant. 

1. I N T R O D U C T I O N  

In a recent  pape r ,  M a t h i a z h a g a n  and  Johr i  (1984) ob t a ined  the fo l low- 
ing set o f  equa t ions  for  an i so t ropic ,  homogeneous ,  and  a lmos t  fiat universe  
(k  = 0) wi th  a cons tan t  vacuum-ene rgy  dens i ty  in B r a n s - D i c k e  theory" 

8 -po 
R 2 -  3~b ~bR 6~b 2 

(1.1) 
3R~b 32~'p~, 

R 3 + 2 w  

where  the e n e r g y - m o m e n t u m  tensor  is 

vac  _ 

T,j - guPv (1.2) 

pv is the vacuum-ene rgy  densi ty ,  R ( t )  is the  scale fac tor  o f  the universe ,  4~ 
is the  sca la r  field o f  the  B r a n s - D i c k e  (1961) equat ion ,  and  to is the 
d imens ion les s  B r a n s - D i c k e  coup l ing  constant .  
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Mathiazhagan and Johri (1984) obtained a particular solution of 
equations (1.1) given by 

( t )  o~+1/2 
R 

= \ to/ 

32~-pv q,= 
(3+2w)(5+6w) 

t 2 
(1.3) 

where to is an arbitrary constant. 
They used this particular solution (1.3) to estimate the value of the 

gravitational constant. In the present work, we obtain the complete set of 
solutions of equations (1.1). We try also to improve their work to estimate 
the value of the gravitational constant. 

2. SOLUTIONS 

Equations (1.1) can be reduced to 

~ + ~bR,_ 1 -~ 

~ = m - J n - - - -  R-  + - I  

327rp~ 
m = -  /2---- 

3+2w '  

where 

Using ~ =�89 d~bE/dc~, 

dR 8~pv I =to R~ = - -  
3 ' 6' dO 

where 

we can rewrite equations (2.1) as 

y ( y 2 - P ) ( y - P ) + P y x = O  

p = 3 + 2 w ,  y =~x(ln R ) + I  

x = lnlOl, Yx =d~ y 

Equations (2.3) trivially gave the following solutions. 

(2.1) 

(2.2) 

(2.3) 
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by 
Solution L y = 0. In this case, the solutions of equations (1.1) are given 

solutions of  

el  
R = +  

{c2 + [87rpv/(3 +2w)]l/zt} 2 
(2.4) 

[ . [ 8~rpv "~1/2t']2 
~b = - I C2~= I ~ "  J t. \3  +2to,] 

where cl, c2 are constants of  integration. 

Solution 11. y =p/4.  In this case, the solutions of equations (1.1) are 
given by 

[" 3 2 ~ r p ~  t 2 + A t + B ]  (~ 
R = c3 [ ( 3 + 2 w"~'~-+ 6 w ) 

(2.5) 
327rpv 2 

~b - (3 + 2~--~ + 6w) t + A t + B  

where e3, A, and B are constants of integration. 
If  one puts A = 0 = B, and 

e3L(3+ 2w--~--+6w) = To 

then one can get Mathiazhagan and Johri's (1984) particular solution given 
by (1.3). 

Solution IlL y=  +(p/12)  ~/2. In this case, the solutions of equations 
(1.1) are given by 

[" 1 6 7 r p ~  -]-1/2•176 
R =c4L3+ 2wt  2+ a ' t +  B ' j  

(2.6) 
gb = 167rpo t 2 + A , t + B  , 

3+2w 

where c4, A', and B' are constants of integration. 

Solution IV. y # c o n s t ,  w # - 5 / 6 .  In this case, the 
equations (1.1) are given by 

(y - a ) ( 2 a - l ) / [ 4 ( 3 a - 1 ) ] ( y  + a )  (2a+l)/[4(3a+l)] 

csR = (y __ 3a2) (6a2_l ) / [2(9a2_l )  ] 

(2.7) (y - a) a/tz(3a-1)j 
c6l~b] - (y + a)a/t2~3a+,)~(y _ 3a 2),/~9.2-a) 

where c5 and c6 are constants of integration and a 2 = p~ 12 = (3 + 2to)/12. 
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Solution V. y ~ const, to = - 5/6. In this case, the solutions of equations 
(1.1) are given by 

5/4 --1/6 [(3y-l~ el/[2(3y_1)]] 
CTR = L \ ~ /  J 

(2.8) 
(3y--1)~l/4el[2(3y-1)] 

c81 1 = 

where c7 and c8 are constants of integration. 
Thus, we have obtained the complete set of solutions of equations (1.1). 

3. ESTIMATION OF THE VALUE OF THE GRAVITATIONAL 
CONSTANT BY CONSIDERING MATHIAZHAGAN AND 
JOHR I 'S  SOLUTION 

To determine theoretically the present value of the gravitational con- 
stant, we shall follow the revised version of the inflationary universe scenario 
(Linde, 1982; Albrecht and Steinhardt, 1982) within the framework of 
Brans-Dicke theory. We take an SU(5) model with Coleman-Weinberg 
(CW) symmetry-breaking mechanism. The effective zero-temperature 
(T  = 0) CW scalar potential is 

4 4~ 1 Vo(,b)=B~b ln~--y-~ --~lBo-4 (3.1) 

where ~b is related to the adjoint Higgs field, B = (5625/1024rr2)g 4, g2 is 
the gauge coupling parameter, and o-=4.5•  10~4GeV. A temperature- 
dependent term Vr should be included in the above potential for a finite 
temperature. When T<< Mx [M 2 = (25/8)g2o'2], the effective scalar potential, 
including the temperature correction, in the range 0 < 4~- o- is [following 
Abbot (1981) and Sher (1982)] 

V(6)  = 51-~2 cp m to (3.2) 

We know that when the temperature of the universe is greater than the 
critical temperature (Tout ~ •) the symmetric (~ = 0) vacuum is favored. 
As the temperature of the universe approaches the critical temperature, a 
second minimum develops at ~ ~ cr. Once the temperature of the universe 
drops below the critical temperature (Tout ~ ~) in the course of expansion, 
the symmetric phase ~ ~ 0  still remains as a local minimum because a 
potential barrier at ~ ~-T forbids it to make a transition from ~ = 0 to 

-- g, the symmetry-breaking phase. In this era the vacuum energy density 
pv ~ V ( 0 ) =  IBo'4 dominates. This large energy density causes the universe 
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to expand exponentially. This exponential expansion continues till the 
temperature of the universe drops to a value To, after which the probability 
of tunneling through the potential barrier becomes significant. The value 
of  Tc is chosen to be around 108 GeV (Albrecht and Steinhardt, 1982; 
Albrecht et al. 1982). Near this temperature the thermal fluctuations drive 
different regions of the universe away from the SU(5)  symmetric phase and 
one may expect the size of a typical fluctuation (a bubble) region to be 
O ( T ~  1) and the value of ~b inside the bubble to be O(Tc).  These bubbles, 
once created, blow up rapidly, converting the whole universe to the stable 
phase 4) ~ o-. 

We now calculate the evolution of the Higgs field $ from ~b = ~bo, the 
value of $ after barrier penetration, to 4) ~ o- and from this time evolution 
we shall determine the time required after the tunneling event for the Higgs 
field to r011 down to the global minimum $ ~ or. Neglecting the loss of 
energy through radiation of  particles, the time evolution equation of 
(Albrecht et al., 1982) is 

d [-15 "2 _] 2q ~245 R/~ ~L~-~b  + V(~b) - (3.3) 

The above equation with equation (3.2) reduces to 

~ +  /~" [15 2 2\  750 4 (__~) 
3 ~ - 4 + ~ ] ' ~ g  T ) ( 9 - 1 - ~ 8 ~ 2 g  In t~3~---0 (3.4) 

Using (1.3), one can write equation (3.4) as 

d2~b q_a d~b+ b~b + c~b 3 -- 0 (3.5) 
dt 2 t dt 

where a = 3 ( l ~ / R ) t  = 3(o9 + 1/2), b = (15/12)g2T 2, and 

c =  ~ m  (3.6) 

Equation (3.5) will be solved in the range ~bo < ~b < o- where the potential 
is very flat, for three different approximations, each of  which has a simple 
analytic solution. 

Case I. The..slow-rolling regime, where the field rolls at terminal 
velocity and the ~b term is negligible. Under this approximation, equation 
(3.5) becomes 

a 
d ~ +  b~b + c ~  3 = 0 (3.7) 

t a t  
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Solving, we find 

05 = [(05o2 + b/c)e(b/a),2 - 05o211/2 (3.8) 

Immediately after tunneling, the value of 05 is chosen to be 05(0) = 050 = 
3 x 10 8 GeV, ~(0) = 0, and we neglect the finite-temperature correction. We 
begin our calculation at temperature T,  ~ 10 ~4 GeV and corresponding time 
t ,  ~ 10 -~4 GeV -1. Now, the time required for the evolution of 05 from 05 = 050 
to 05 = or is given by 

tr=(~)li~{logpO'~+q ~ 4"20 ]~'i~ 
L ~ 0502"+q2JJ 

(3.9) 

This gives, on integration, 

1 + c t 2 ~  -1/2 05=\  a ] (3.11) 

and the approximate rollover time tr is given by 

/ a \  1 -7 
t~=t-~)-~o--  10 GeV -1 (3.12) 

Case 3. Keeping the ~ term, i.e., assuming a oscillation in 05 but that 
this oscillation is not too large and dropping the 053 term from equation 
(3.5), we get 

+_a d05+ b05 = 0 (3.13) 
t dt 

The solution of 05 for this case is given by 

05 = t-("-l)/2[ AJ•( b l/2t ) ] 

where /z = � 8 9  1) and J is the Bessel function. We have A - 1 ,  obtained 
from the boundary condition. The corresponding rollover time tr obtained 
by replacing J,~ by its value for large argument is given by 

tr ~ 10 -8 GeV -~ 

= T;  -1 _ 10-8 GeV -1 

where 

q2 = b / c  (3.10) 

Case 2. Neglecting ~ and 05, since the potential is very flat in the range 
of interest 050 < 05 < o-, equation (3.5) yields 

d05 
_a__= -c05 3 
t dt 



Inflationary Brans-Dicke Universe 413 

The calculated rollover time under the three different approximations is 
quite consistent. But the evolution of 4> is not the same for the three cases. 

Having determined the time evolution of ~b and the rollover times, we 
now can calculate the amount of inflation occurring during this period. The 
value of the Brans-Dicke scalar field (Oh,) at the end of the Planck era is 
given by the general field equations (Pollock, 1982) 

R ~ - � 8 9  ~ 8~(a, 'po <- (lp,)-2 

where lel is the Planck length. Since (lm) -2--- 1 / G =  cb,, we get 

4~, -> (8 rrpv) '/2 

The corresponding time is 

[ [ (5  +6oJ) (3  + 2~o)] '/2 
t ,  - [ 1 ~ (8q7") l / 4 p v l / 4  ~ 10-14 GeV-1 

and the Planck temperature is T, - o- = 1014 GeV. 
The calculated values of T, and t ,  are quite consistent with the initial 

values which we assumed at the start of our calculations. Since the theoretical 
rollover time is approximately 10 -8 to 10 -7 GeV -1, the amount of inflation 
is approximately - -{10-8/ (4•176 which is more than 
enough to explain cosmological facts (Guth, 1981). The value of ~b after 
the inflation is obtained from (1.3), 

0 f  ~ 1040--1042 GeV2 

or  

1 
Gf ~-'~'-~ 10-4~ -42 GeV -2 

v,f 

This value is quite close to the present value of G-~ 10 -38 GeV -2, despite 
many approximations involved in this calculation. 
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